HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS – EXTENSION TWO

2010 HSC

ASSESSMENT TASK 1

Examiner ~ G Rawson GENERAL INSTRUCTIONS

- Reading Time 3 minutes.
- Working Time 40 MINUTES.
- Attempt **all** questions.
- All necessary working should be shown in every question.
- This paper contains two (2) questions.

- Marks may not be awarded for careless or badly arranged work.
- Board approved calculators may be used.
- Each question is to be started on a new piece of paper.
- This examination paper must **NOT** be removed from the examination room.

STUDENT NAME:	
TEACHER:	

QUESTION ONE 15 marks Start a SEPARATE sheet

- (a) The ellipse \mathcal{E} has equation $\frac{x^2}{25} + \frac{y^2}{16} = 1$.
 - (i) State the intercepts with the axes.
 - (ii) Determine the eccentricity of \mathcal{E}
 - (iii) State the coordinates of the two foci.
 - (iv) Write down the equation of the auxiliary circle.
- (b) (i) Sketch the function $f(x) = x^2 c^2$, where |c| > 1, clearly showing its vertex and intercepts 1
 - (ii) Hence, without using calculus, draw separate sketches, at least $\frac{1}{3}$ of a page, for each of the following curves. For each sketch, show the original function with a dotted line, and clearly indicate turning points.

$$(A) y = |f(x)| 2$$

$$(B) y = \frac{1}{f(x)}$$

$$(C) y = \sqrt{f(x)}$$

(D)
$$y = [f(x)]^2$$

(E)
$$y = \left[f(x) \right]^3$$

QUESTION TWO 15 marks Start a SEPARATE sheet

- (a) The points $P\left(cp, \frac{c}{p}\right)$ and $Q\left(cq, \frac{c}{q}\right)$ are points on the rectangular hyperbola $xy = c^2$. Tangents to the rectangular hyperbola at P and Q intersect at the point R.
 - (i) Show that the tangent to the rectangular hyperbola at any point $T\left(ct, \frac{c}{t}\right)$ has equation $x+t^2y-2ct=0$.
 - (ii) Find the coordinates of R.
 - (iii) If P and Q are variable points on the rectangular hyperbola which move so that $p^2 + q^2 = 2$, show that the equation of the locus of R is given by $xy + y^2 = 2c^2$. 3
- (b) The points $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec \phi, b \tan \phi)$ lie on the same branch of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, and PQ is a focal chord, passing through S(ae, 0).

 Use the gradients of PS and QS to show that $e = \frac{\sin \theta \sin \phi}{\sin (\theta \phi)}$.
- (c) (i) Determine the real values of λ for which the equation

$$\frac{x^2}{4-\lambda} + \frac{y^2}{2-\lambda} = 1 \text{ defines}$$

- (A) an ellipse 1
- (B) a hyperbola 1
- (ii) Describe how the shape of this curve changes as λ increases from 1 towards 2. What is the limiting position of the curve as λ approaches 2?

Year 12	Mathematics Extension 2	Ass Task 1 2010 HSC
Question No. 1 Solutions and Marking Guidelines Outcomes Addressed in this Question		tion
E4 - uses effi	cient techniques for the algebraic manipulation required in dealing	
sections	s the ideas of algebra and calculus to determine the important fear	turns of the graphs of a wide variety of
functions	s the fue as of argeora and calculus to determine the important rea	tures of the graphs of a wide variety of
Part /	Solutions	Marking Guidelines
Outcome		
(a) E4	(i) (5, 0), (-5, 0), (0, 4), (0, -4)	1 mark: correct solution
	(ii) $b^2 = a^2 (1 - e^2)$	
	$16 = 25\left(1 - e^2\right)$	1 mark: correct solution
	0	Thatk. correct solution
	$e^2 = \frac{9}{25}$	
	3	
	$e^2 = \frac{9}{25}$ so $e = \frac{3}{5}$	
	-	1 months a compact solution
	(iii) Foci: $(\pm ae, 0)$ ie $(3,0)$ and $(-3,0)$	1 mark: correct solution
	(iv) auxiliary circle: $x^2 + y^2 = 25$	1 mark: correct solution
(b) (i)	\	
E6		1 mark: correct graph with
		correct intercepts shown
	-c\ /c /c	
	-1	
	c	
(ii)(A)	\	
E6		2 marks: correct graph with
	C ²	correct intercepts shown
		1 mark: partially correct
	-c', /c	
	-c²	

Year 12	Mathematics Extension 2	Ass Task 1 2010 HSC
Question No		
	Outcomes Addressed in this Que	
	cient techniques for the algebraic manipulation required in deali	ng with questions such as those involving conic
Part /	Solutions	Marking Guidelines
Outcome	Solutions	Walking Guidennes
Outcome	\	
(a)	$P\left(cp,\frac{c}{p}\right)$ $Q\left(cq,\frac{c}{q}\right)$	
(a)(i)	$xy = c^{2}$ $y = \frac{c^{2}}{x}$ $y' = -\frac{c^{2}}{x^{2}}$ $m = -\frac{1}{t^{2}} \text{ at } x = ct$ $\therefore \text{ tangent is}$ $y - \frac{c}{t} = -\frac{1}{t^{2}} (x - t^{2})$ $x + t^{2}y - ct = -x + ct$ $x + t^{2}y - 2ct = 0$	ct) 1 mark: correct solution
(a)(ii)	tangent at $P: x + p^2y - 2cp = 0$ (1) tangent at $Q: x + q^2y - 2cq = 0$ (2) $(1)-(2) (p^2-q^2)y = 2c(p-q)$	2 marks: correct solution
	$y = \frac{2c}{p+q} (p \neq q)$ sub into (1) $x = 2cp - p^{2} \left(\frac{2cp}{p+q}\right)$ $= \frac{2cp^{2} + 2cpq - 2cp^{2}}{p+q}$ $= \frac{2cpq}{p+q}$	1 mark: significant progress towards correct solution
	$\therefore R \text{ is } \left(\frac{2cpq}{p+q}, \frac{2c}{p+q}\right)$	

(a)(iii)

$$x = \frac{2cpq}{p+q} \qquad \dots (1)$$
$$y = \frac{2c}{p+q} \qquad \dots (2)$$

$$y - \frac{y}{p+q}$$

$$(1) \div (2) \qquad \frac{x}{y} = pq$$

and from (2)
$$p+q=\frac{2c}{v}$$

Now, given that $p^2 + q^2 = 2$

$$\left(p+q\right)^2 - 2pq = 2$$

$$\left(\frac{2c}{y}\right)^2 - 2\left(\frac{x}{y}\right) = 2$$
$$4c^2 - 2xy = 2y^2$$
$$xy + y^2 = 2c^2$$

S lies on PO

 \underline{OR} sub $R\left(\frac{2cpq}{p+q}, \frac{2c}{p+q}\right)$ into $xy + y^2 = 2c^3$ to show true

(b)

$$\begin{array}{l} \operatorname{so} \quad m_{PS} = m_{QS} \\ \frac{b \tan \theta - 0}{a \sec \theta - ae} = \frac{b \tan \phi - 0}{a \sec \phi - ae} \\ \frac{\tan \theta}{\sec \theta - e} = \frac{\tan \phi}{\sec \phi - e} \\ \tan \theta \sec \phi - e \tan \theta = \tan \phi \sec \theta - e \tan \phi \\ e \left(\tan \theta - \tan \phi \right) = \tan \theta \sec \phi - \tan \phi \sec \theta \\ e = \frac{\tan \theta \sec \phi - \tan \phi \sec \theta}{\tan \theta - \tan \phi} \times \frac{\cos \theta \cos \phi}{\cos \theta \cos \phi} \\ = \frac{\sin \theta - \sin \phi}{\sin \theta \cos \phi - \cos \theta \sin \phi} \end{array}$$

 $=\frac{\sin\theta-\sin\phi}{\sin\left(\theta-\phi\right)}$

3 marks: correct solution

<u>2 marks</u>: substantial progress towards correct solution

<u>1 mark</u>: partial progress towards correct solution

4 marks: correct solution

<u>3 marks</u>: substantial progress towards correct solution

<u>**2 marks :**</u> partial progress towards correct solution

<u>**1 mark :**</u> recognising that $m_{PS} = m_{OS}$

(c)(i)(A) $\frac{x^2}{4-\lambda} + \frac{y^2}{2-\lambda} = 1$ 1 mark: correct solution for ellipse, $4 - \lambda > 0$ and $2 - \lambda > 0$ $\lambda < 4$ and $\lambda < 2$ ie $\lambda < 2$ (c)(i)(B)for hyperbola, $4 - \lambda > 0$ and $2 - \lambda < 0$ $\lambda < 4$ and $\lambda > 2$ $2 < \lambda < 4$ ie <u>**1 mark**</u>: correct solution ORfor hyperbola, $4 - \lambda < 0$ and $2 - \lambda > 0$ $\lambda > 4$ and $\lambda < 2$ no solution $\therefore 2 < \lambda < 4$ 3 marks: correct and As λ increases from 1 to 2, the curve remains as an ellipse, (c)(ii) complete explanation with both the major and minor axes decreasing. The ellipse becomes flatter, or more 'cigar' shaped. 2 marks: reasonably correct explanation As λ approaches 2, the ellipse approaches a <u>line segment</u> joining $\left(-\sqrt{2},0\right)$ to $\left(\sqrt{2},0\right)$. <u>1 mark</u>: partially correct